209 research outputs found

    Design and Effectiveness of a Required Pre-Clinical Simulation-based Curriculum for Fundamental Clinical Skills and Procedures

    Get PDF
    For more than 20 years, medical literature has increasingly documented the need for students to learn, practice and demonstrate competence in basic clinical knowledge and skills. In 2001, the Louisiana State University Health Science Centers (LSUHSC) School of Medicine – New Orleans replaced its traditional Introduction in to Clinical Medicine (ICM) course with the Science and Practice of Medicine (SPM) course. The main component within the SPM course is the Clinical Skills Lab (CSL). The CSL teaches 30 plus skills to all pre-clinical medical students (Years 1 and 2). Since 2002, an annual longitudinal evaluation questionnaire was distributed to all medical students targeting the skills taught in the CSL. Students were asked to rate their self- confidence (Dreyfus and Likert-type) and estimate the number of times each clinical skill was performed (clinically/non-clinically). Of the 30 plus skills taught, 8 were selected for further evaluation. An analysis was performed on the eight skills selected to determine the effectiveness of the CSL. All students that participated in the CSL reported a significant improvement in self-confidence and in number performed in the clinically/non-clinically setting when compared to students that did not experience the CSL. For example, without CSL training, the percentage of students reported at the end of their second year self-perceived expertise as “novice” ranged from 21.4% (CPR) to 84.7% (GU catheterization). Students who completed the two-years CSL, only 7.8% rated their self-perceived expertise at the end of the second year as “novice” and 18.8% for GU catheterization. The CSL design is not to replace real clinical patient experiences. It's to provide early exposure, medial knowledge, professionalism and opportunity to practice skills in a patient free environment

    Different Requirement for Wnt/ÎČ-Catenin Signaling in Limb Regeneration of Larval and Adult Xenopus

    Get PDF
    BACKGROUND:In limb regeneration of amphibians, the early steps leading to blastema formation are critical for the success of regeneration, and the initiation of regeneration in an adult limb requires the presence of nerves. Xenopus laevis tadpoles can completely regenerate an amputated limb at the early limb bud stage, and the metamorphosed young adult also regenerates a limb by a nerve-dependent process that results in a spike-like structure. Blockage of Wnt/ÎČ-catenin signaling inhibits the initiation of tadpole limb regeneration, but it remains unclear whether limb regeneration in young adults also requires Wnt/ÎČ-catenin signaling. METHODOLOGY/PRINCIPAL FINDINGS:We expressed heat-shock-inducible (hs) Dkk1, a Wnt antagonist, in transgenic Xenopus to block Wnt/ÎČ-catenin signaling during forelimb regeneration in young adults. hsDkk1 did not inhibit limb regeneration in any of the young adult frogs, though it suppressed Wnt-dependent expression of genes (fgf-8 and cyclin D1). When nerve supply to the limbs was partially removed, however, hsDkk1 expression blocked limb regeneration in young adult frogs. Conversely, activation of Wnt/ÎČ-catenin signaling by a GSK-3 inhibitor rescued failure of limb-spike regeneration in young adult frogs after total removal of nerve supply. CONCLUSIONS/SIGNIFICANCE:In contrast to its essential role in tadpole limb regeneration, our results suggest that Wnt/ÎČ-catenin signaling is not absolutely essential for limb regeneration in young adults. The different requirement for Wnt/ÎČ-catenin signaling in tadpoles and young adults appears to be due to the projection of nerve axons into the limb field. Our observations suggest that nerve-derived signals and Wnt/ÎČ-catenin signaling have redundant roles in the initiation of limb regeneration. Our results demonstrate for the first time the different mechanisms of limb regeneration initiation in limb buds (tadpoles) and developed limbs (young adults) with reference to nerve-derived signals and Wnt/ÎČ-catenin signaling

    Comparison of the force exerted by hippocampal and DRG growth cones

    Get PDF
    Mechanical properties such as force generation are fundamental for neuronal motility, development and regeneration. We used optical tweezers to compare the force exerted by growth cones (GCs) of neurons from the Peripheral Nervous System (PNS), such as Dorsal Root Ganglia (DRG) neurons, and from the Central Nervous System (CNS) such as hippocampal neurons. Developing GCs from dissociated DRG and hippocampal neurons were obtained from P1-P2 and P10-P12 rats. Comparing their morphology, we observed that the area of GCs of hippocampal neurons was 8-10 \ub5m(2) and did not vary between P1-P2 and P10-P12 rats, but GCs of DRG neurons were larger and their area increased from P1-P2 to P10-P12 by 2-4 times. The force exerted by DRG filopodia was in the order of 1-2 pN and never exceeded 5 pN, while hippocampal filopodia exerted a larger force, often in the order of 5 pN. Hippocampal and DRG lamellipodia exerted lateral forces up to 20 pN, but lamellipodia of DRG neurons could exert a vertical force larger than that of hippocampal neurons. Force-velocity relationships (Fv) in both types of neurons had the same qualitative behaviour, consistent with a common autocatalytic model of force generation. These results indicate that molecular mechanisms of force generation of GC from CNS and PNS neurons are similar but the amplitude of generated force is influenced by their cytoskeletal properties

    The role of myosin-II in force generation of DRG filopodia and lamellipodia

    Get PDF
    Differentiating neurons process the mechanical stimulus by exerting the protrusive forces through lamellipodia and filopodia. We used optical tweezers, video imaging and immunocytochemistry to analyze the role of non-muscle myosin-II on the protrusive force exerted by lamellipodia and filopodia from developing growth cones (GCs) of isolated Dorsal Root Ganglia (DRG) neurons. When the activity of myosin-II was inhibited by 30\ue2 ... 1/4M Blebbistatin protrusion/retraction cycles of lamellipodia slowed down and during retraction lamellipodia could not lift up axially as in control condition. Inhibition of actin polymerization with 25\ue2 ...nM Cytochalasin-D and of microtubule polymerization with 500\ue2 ...nM Nocodazole slowed down the protrusion/retraction cycles, but only Cytochalasin-D decreased lamellipodia axial motion. The force exerted by lamellipodia treated with Blebbistatin decreased by 50%, but, surprisingly, the force exerted by filopodia increased by 20-50%. The concomitant disruption of microtubules caused by Nocodazole abolished the increase of the force exerted by filopodia treated with Blebbistatin. These results suggest that; i-Myosin-II controls the force exerted by lamellipodia and filopodia; ii-contractions of the actomyosin complex formed by filaments of actin and myosin have an active role in ruffle formation; iii-myosin-II is an essential component of the structural stability of GCs architecture

    A life course approach to injury prevention: a "lens and telescope" conceptual model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although life course epidemiology is increasingly employed to conceptualize the determinants of health, the implications of this approach for strategies to reduce the burden of injuries have received little recognition to date.</p> <p>Methods</p> <p>The authors reviewed core injury concepts and the principles of the life course approach. Based on this understanding, a conceptual model was developed, to provide a holistic view of the mechanisms that underlie the accumulation of injury risk and their consequences over the life course.</p> <p>Results</p> <p>A "lens and telescope" model is proposed that particularly draws on (a) the extended temporal dimension inherent in the life course approach, with links between exposures and outcomes that span many years, or even generations, and (b) an ecological perspective, according to which the contexts in which individuals live are critical, as are changes in those contexts over time.</p> <p>Conclusions</p> <p>By explicitly examining longer-term, intergenerational and ecological perspectives, life course concepts can inform and strengthen traditional approaches to injury prevention and control that have a strong focus on proximal factors. The model proposed also serves as a tool to identify intervention strategies that have co-benefits for other areas of health.</p

    Frequently increased epidermal growth factor receptor (EGFR) copy numbers and decreased BRCA1 mRNA expression in Japanese triple-negative breast cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Triple-negative breast cancer (estrogen receptor-, progesterone receptor-, and HER2-negative) (TNBC) is a high risk breast cancer that lacks specific therapy targeting these proteins.</p> <p>Methods</p> <p>We studied 969 consecutive Japanese patients diagnosed with invasive breast cancer from January 1981 to December 2003, and selected TNBCs based on the immunohistochemical data. Analyses of epidermal growth factor receptor (<it>EGFR</it>) gene mutations and amplification, and <it>BRCA</it>1 mRNA expression were performed on these samples using TaqMan PCR assays. The prognostic significance of TNBCs was also explored. Median follow-up was 8.3 years.</p> <p>Results</p> <p>A total of 110 (11.3%) patients had TNBCs in our series. Genotyping of the <it>EGFR </it>gene was performed to detect 14 known <it>EGFR </it>mutations, but none was identified. However, <it>EGFR </it>gene copy number was increased in 21% of TNBCs, while only 2% of ER- and PgR-positive, HER2-negative tumors showed slightly increased <it>EGFR </it>gene copy numbers. Thirty-one percent of TNBCs stained positive for EGFR protein by immunohistochemistry. <it>BRCA1 </it>mRNA expression was also decreased in TNBCs compared with controls. Triple negativity was significantly associated with grade 3 tumors, TP53 protein accumulation, and high Ki67 expression. TNBC patients had shorter disease-free survival than non-TNBC in node-negative breast cancers.</p> <p>Conclusion</p> <p>TNBCs have an aggressive clinical course, and <it>EGFR </it>and <it>BRCA1 </it>might be candidate therapeutic targets in this disease.</p
    • 

    corecore